
Genetic analysis of heading date in winter and spring wheat

Mao Huang . Nafeti Mheni . Gina Brown-Guedira . Anne McKendry .

Carl Griffey . David Van Sanford . Jose Costa . Clay Sneller

Received: 3 October 2017 / Accepted: 14 June 2018

� Springer Nature B.V. 2018

Abstract Climate change will have severe effects on

wheat production, but crop phenology can be an

important component of wheat adaptation. In this

study, elite soft winter wheat and hard spring wheat

(HSW) populations were phenotyped for heading date

(HD) in North America and Tanzania (HSW only). All

lines were genotyped with common single nucleotide

polymorphism markers to compare the genetics and

prediction accuracy of genomic selection (GS) for HD

in winter and spring wheat. Lines were tested under

diverse environments and the HSW germplasm was

assessed for their early maturity performance in

Africa. Two clusters of environments were formed

for each population. One cluster consisted of southern

environments and the other consisted of northern

environments. The latter produced a more narrow

range of HD than the southern cluster. Thirteen highly

significant (p\ 0.0005) quantitative trait loci (QTLs)

for HD were detected in two populations. Within each

population, the QTL effects were consistent between

clusters of environments. Within each population, GS

model developed using data from one cluster of

environments could predict HD in the other cluster.

The prediction accuracy of GS between two popula-

tions was minimal. Similarly, only a few minor effects

QTL were in common between the two populations.

Additionally, we identified 15 spring wheat genotypes

with HD earlier than commercial Tanzanian wheat

varieties. These genotypes could be used as a resource

for creating early HD wheat varieties for Tanzania.

Keywords Clustering of environments � Genomic

selection � Heading date � Kompetitive allelic specific
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polymerase chain reaction (KASP) � Quantitative trait
loci � Vrn and Ppd genes

Introduction

Wheat (Triticum aestivum L.) is a global source of

staple grain, and has contributed immensely to the

development of human civilization. Presently, global

wheat demand is increasing, especially in sub-Saharan

Africa, where the consumption rate for wheat is

increasing more rapidly than for any other cereal grain

(http://www.world-grain.com), resulting in a growing

gap between domestic wheat production and con-

sumption in Africa over the last several decades.

Tanzania and the rest of east Africa are among the

most fragile regions in the world and are facing the

impacts of climate variation induced by climate

change (Challinor et al. 2007), which has increased

the frequency, duration and timing of drought and heat

stress in Africa (http://www.unep.org). Drought can

reduce wheat yield through ovule abortion, pollen

sterility, shriveled seeds and kernel abortion (Rosen-

zweig et al. 2001). Foulkes et al. (2007) estimated

average yield of wheat under normal water supply

conditions to be 8 metric tons/hectare, but severe yield

reductions can be caused by drought, especially when

it occurs after anthesis. In order to develop new cul-

tivars adaptive to environmental changes, breeders

should take into account the potential effects of

drought and heat stress (Ceccarelli et al. 2010).

The wide adaptability of wheat is partly due to

genetic diversity in flowering time and maturity (Law

and Worland 1997; Lewis et al. 2008). Wheat

phenology is controlled by the vernalization and

photoperiod sensitive loci, as well as earliness per se

genes (Zikhali and Griffiths 2015). Combinations of

these genes contribute to differences in flowering and

maturity time in wheat, taking into account environ-

mental conditions (Gomez et al. 2014; Guedira et al.

2014; Kamran et al. 2013; Sukumaran et al. 2016; van

Beem et al. 2005).

In order to flower, photoperiod sensitive wheat

cultivars require long day-length and the response to

photoperiod is important for their adaptation to

different environments (Snape et al. 2001). Three

major loci for photoperiod sensitivity in wheat are

located on chromosomes 2A (Ppd-A1), 2B (Ppd-B1)

and 2D (Ppd-D1) (Beales et al. 2007; Dı́az et al. 2012;

Iqbal et al. 2007; Kamran et al. 2014; Khlestkina et al.

2009; Wilhelm et al. 2009). Recessive alleles at these

loci enhance photoperiod sensitivity, whereas the

dominant alleles reduce or eliminate photoperiod

response (Whitechurch and Slafer 2001). The Ppd-

D1 locus has the largest effect on photoperiod

sensitivity (Beales et al. 2007; Kamran et al.

2013, 2014). A fourth locus (Ppd-B2) was mapped

on chromosome 7B (Khlestkina et al. 2009). Low

photoperiod sensitivity is important for plants grown

in latitudes below 45� where the day-length can be

short (Dyck et al. 2004). Photoperiod insensitive

wheat is also important in short day-length areas,

where spring wheat is mainly produced, to allow

multiple crop harvests per year (Mohler et al. 2004).

Vernalization response in wheat is controlled by

multiple gene series designated Vrn-1, Vrn-2, Vrn-3

and Vrn-4. There are three Vrn-1 loci located on

chromosome 5A (Vrn-A1), 5B (Vrn-B1) and 5D (Vrn-

D1) (Law et al. 1976; Sourdille et al. 2000; Barrett

et al. 2002; Yan et al. 2003). Three Vrn-3 loci are

located on chromosomes 7A, 7B, and 7D (Yan et al.

2006; Bonnin et al. 2008; Wang et al. 2009) whereas

one Vrn-4 locus is located on chromosome 5D (Kato

et al. 2003). The Vrn-2 gene series are dominant for

winter growth habit wheat, whereas Vrn-1, Vrn-3, and

Vrn-4 are dominant for spring growth habit (Yan et al.

2004).

Earliness per se genes can influence wheat flower-

ing time and maturity, independent of photoperiod and

vernalization genes (Lewis et al. 2008; Gomez et al.

2014). These genes are important for the wide

adaptation of wheat to various environments (Snape

et al. 2001; Gomez et al. 2014). Worland (1996)

summarized the regions of the wheat genome that have

earliness per se genes, reporting such genes on

chromosomes 3A, 2B, 2D, 4D, 6B, 6D and 7B.

A QTL study by Sourdille et al. (2000) found

important chromosome regions associated with flow-

ering time in wheat on chromosomes 2B, 5A and 7B.

Additionally, a study conducted by Hoogendoorn

(1985) found chromosome regions controlling flow-

ering in wheat, and identified earliness per se genes on

chromosomes 3A, 4A, 4D, 6B and 7B. Hanocq et al.

(2004) identified flowering or heading time QTLs on

chromosomes 2B, 2D, 5B and 7A. Wheat chromo-

some groups 2, 5 and to a lesser extent, group 7, are

generally known to have major effect on wheat

development (Law and Worland 1997). Earliness per
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se genes affect flowering after the vernalization and

photoperiod requirements are satisfied (Flood and

Halloran 1984).

Crop variability in flowering time can be exploited

to select cultivars adaptive to different climates and be

used to maximize yield potential under various

environmental conditions (Lewis et al. 2008). Wheat

cultivars with a short growing season may have the

ability to escape the effect of drought, which usually

occurs toward the end of the growing season in Africa

(Araus et al. 2008). Breeding lines with better

adaptation to different environments could be

enhanced via marker assisted selection (MAS). Con-

ventional MAS utilizes molecular markers that are in

linkage disequilibrium (LD) with genes or QTLs

controlling a trait, and hence can be used to select

individuals with desirable traits. Conventional MAS is

most useful for chromosome regions with large trait

effect and can be repeatable over environments and

genetic backgrounds. Genomic selection (GS) utilizes

all markers distributed throughout the genome to

predict the breeding value of an individual and hence

can be useful for traits controlled by many small effect

genes (Meuwissen et al. 2001). It is suggested that GS

can be a useful tool to reduce the duration of a

breeding cycle (Heffner et al. 2009; Jannink et al.

2010). Using GS to predict HD values from different

environments and populations could assist breeders in

selecting cultivars adaptive to specific environments.

Indirect selection for maturity can be used if data

from one environment can predict maturity in another.

In addition, genetic information from one population

and environment could be useful to understand that

trait in a different environment and population. The

objectives of this study were to: (1) assess the

commonality of the genetics for HD trait in winter

and spring wheat grown in different environments, (2)

evaluate prediction accuracy of GS for HD between

different environments and market classes, and (3)

identify wheat germplasm with early maturity in

Tanzania.

Materials and methods

Plant materials

Two populations, a soft winter wheat population

(SWW) and a hard spring wheat population (HSW)

were used in the study. The SWW population

contained 273 elite winter wheat genotypes generated

by the Triticeae Coordinated Agricultural Project

(TCAP) described by Huang et al. (2016). Briefly,

the SWW lines and check variety ‘‘Branson’’ were

planted in 16 environments in the USA between 2012

and 2013 (Table 1). An augmented design was used

for each replication at each location. Only one

replication was used at each site except at Wooster

Ohio and Warsaw Virginia, where three replications

were included. The check variety ‘‘Branson’’ was

repeated eight times per block. At the Wooster and

Warsaw locations all treatments received 28 kg of N

per hectare at fall planting time, and two replications

received low nitrogen treatment (45 kg of N per

hectare) in spring, while the third replication received

full nitrogen treatment (101 kg N per hectare). All

other locations received full nitrogen treatment in the

spring. Heading date for SWW was the day when a

line attained Feekes growth stage 10.5 (e.g., when

50% of the spikes had emerged from the boot). This

date was expressed in Julian days.

The HSW population contained 249 elite spring

wheat line generated by the TCAP (Supplemental

Table 1). The lines were planted in twelve different

environments in the USA in 2012 and 2013 and also in

Arusha Tanzania in 2013 and 2014 (Table 2). The

study was conducted using an augmented design with

one replication at each location. Five check varieties

were repeated within each block. Heading date was

recorded as the date when a line attained at Feekes

stage 10.5 and was expressed as days from planting.

Genotyping

Both populations were genotyped the with 90,000

single nucleotide polymorphism (SNP) marker panel

through Infinium iSELECT (Wang et al. 2014). For

both the SWW and HSW wheat, markers were filtered

with missing value larger than 5%, and minor allele

frequency less than 10%. A total of 13,198 SNPs for

SWW and 17,303 SNPs for HSW population were

retained for use in association analysis. We also

performed SNP tagging for both populations to obtain

a subset of independent markers. Details of the SWW

were described by Huang et al. (2016). The subset of

markers being used was 3919 SNPs in SWW (Huang

et al. 2016), and was 5508 SNPs in HSW. These

subsets of independent markers were used to compute
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Table 1 Summary for Soft Winter Wheat (SWW) and Hard Spring Wheat (HSW) growing environments, their main effects on

heading date (Julian days in SWW and days from planting in HSW), and environmental cluster assignment within each population

Popa Year Town, state, province, or

country

Latitude,

longitude

Code Main

effects

Cluster Environmental

conditions

SWW 2012 Wooster, Ohio Lat: 40.875,

Long: - 81.888

12OWLb 3.1 North Low N

2102 Wooster, Ohio – 12OWM 3.4 North High N

2013 Wooster, Ohio – 13OWL 14.6 North Low N

2013 Wooster, Ohio – 13OWM 14.8 North High N

2013 Custar, Ohio Lat: 41.284

Long: - 83.844

13ONM 16.3 North High N

2013 Fremont, Ohio Lat: 41.364

Long: - 83.155

13OVM 15.6 North High N

2012 Columbia, Missouri Lat: 38.951

Long: - 92.334

12MOM - 10.3 South High N

2013 Columbia, Missouri – 13MOM 16.5 North High N

2012 Warsaw, Virginia Lat: 37.960

Long: - 76.761

12VAL - 21.78 South Low N

2012 Warsaw, Virginia – 12VAM - 21.4 South High N

2013 Warsaw, Virginia – 13VAL - 5.1 South Low N

2013 Warsaw, Virginia – 13VAM - 5.1 South High N

2012 Lexington, Kentucky Lat: 38.040

Long: - 84.503

12KYM - 11.1 South High N

2013 Lexington, Kentucky – 13KYM 5.2 South High N

2012 Queenstown, Maryland Lat: 38.991

Long: - 76.158

12MDM - 14.4 South High N

2013 Queenstown, Maryland – 13MDM - 0.3 South High N

HSW 2012 Davis, California Lat: 38.526

Long: - 121.773

2012 CADAVIRR 53 South Irrigated

2012 Davis, California – 2012 CADAVNIR 53 South Non-irrigated

2013 Arusha, Tanzania Lat: 3.367

Long: 36.683

2013 TAARU - 51 South Irrigated

2014 Arusha, Tanzania – 2014 TAARU - 47 South Non-irrigated

2012 Bozeman, Montana Lat: 45.676

Long: - 111.157

2012

MTBOZ

- 51 North Non-irrigated

2013 Bozeman, Montana – 2013 MTBOZ - 53 North Non-irrigated

2012 Saskatoon, Canada Lat: 52.117

Long: - 106.65

2012 SASAS - 55 North Non-irrigated

2012 Huntley, Montana Lat: 45.928

Long: - 108.246

2012 MTHUN - 65 North Non-irrigated

2013 Huntley, Montana – 2013 MTHUN - 17 North Non-irrigated

2013 El Centro, California Lat: 32.808

Long: 115.446

2013CA IMPIRR - 13 North Irrigated

2013 El Centro, California – 2013CA IMPNIRR - 13 North Non-irrigated

2013 Wooster, Ohio Lat: 40.875,

Long: - 81.888

2013 OHWOO - 59 North Non-irrigated

aPop: SWW soft winter wheat, HSW hard spring wheat
bM medium Nitrogen treatment, L low Nitrogen treatment in the SWW population
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kinship matrix and population structure matrix. Both

the SWW and HSW populations were further geno-

typed with Kompetitive allele specific polymerase

chain reaction (KASP) markers for the Vrn-A1, Vrn-

B1, Vrn-D3, Ppd-A1, Ppd-B1, and Ppd-D1 loci. An

additional Vrn-D1 locus conferring spring growth

habit was also genotyped in the HSW population

(Grogan et al. 2016).

Data analysis

In both populations, phenotypes were adjusted for

block effects. A two-step approach was used to obtain

the best linear unbiased prediction (BLUPs) of each

line, as described for the SWW population by Huang

et al. (2016). The block effects were first adjusted

within each replication in each environment and mean

of each genotype was obtained within each environ-

ment, then a mixed model with genotype, environ-

ment, and error term was included to fit the model. We

estimated the broad sense heritability (H) for HD using

the formula:

H ¼
r2g

r2g þ r2error
�
e

where r2g is variation due to genotype, r2error is error
variance due to both genotype 9 environment inter-

action (GEI) and error variance, and e is the number of

environments.

The matrix for GEI effects from the SWW and

HSW data sets was each generated, and Wards

minimum variance was used to cluster the environ-

ments within each population using PROC CLUSTER

in SAS (SAS Institute Inc. 2008). Two clusters of

environments were identified for each population: a

‘‘South’’ cluster consisting of the southern environ-

ments and a ‘‘North’’ cluster consisting of the most

northern environments. Association analysis was

performed using mixed linear model in R (R Devel-

opment Core Team 2008) with package Genomic

Association and Prediction Integrated Tools (GAPIT

Lipka et al. 2012). Principal component analysis

(PCA) was conducted in R using prcomp function. The

PC scores of each lines were used to correct for

Table 2 Mean squares (MS), F-tests, variance components, and broad-sense heritability (H) of heading date for soft winter wheat

(SWW) and hard spring wheat (HSW) populations over all environments, over the environments in the South cluster of environments,

and over the North cluster of environments

Pop. Source All environments South cluster North cluster

df MS Fb df MS F df MS F

SWW Gena 287 94 26 8 99 28 287 15 14

Env 15 51,418 14,300 287 23,678 6756 6 10,460 1000

Error 4286 4 2586 2586 3 2013 1

rGen
2 6 11 2

rEnv
2 179 82 36

rError
2 3.6 4 1

# Env 16 9 7

H 0.96 0.96 0.93

HSW Gen 248 184 7 248 398 24 248 163 58

Env 11 415,079 15,783 3 852,139 51,826 7 91,083 32,099

Error 2521 26 743 16 1530 3

rGen
2 14.3 94.2 3.5

rEnv
2 1686 3416 485.2

rError
2 14.3 16.7 2.8

# Env 12 4 8

H 0.92 0.96 0.91

arGen
2 : genotypic variance; rEnv

2 : environmental variance; rError
2 : error variance; # Env: number of environments within the cluster

bAll F tests were significant at p\ 0.001
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population structure with the number of PCs selected

by GAPIT, and a kinship matrix (K) was used to

account for relatedness between individuals. The

principal component scores were generated in R and

the K matrix was generated using R package rrBLUP

(Endelman 2011). The association analysis model

was:

y ¼ XbþQwþ Saþ Zvþ e

where y is a vector of observed phenotypes, Xb is the

non-genetic fixed effect (mean); Qw is a fixed effect

with q principal component scores and with w being

the vector of principal component effects, Sa is a fixed

effect with S being the matrix of marker scores and a
being a vector of marker effects; Zv is the random

polygene effect with Z being the matrix relating

observations to their polygene effect, and v being the

vector of polygene effects (Yu et al. 2006). Based on

population structure and scree plot, two principal

component scores were used for both populations. The

total number of markers being used for association

analysis was 13,198 for the SWW and 17,030 for the

HSW populations. For both populations, we analyzed

HD (1) over all environments, (2) North environments

only, and (3) South environments only.

We conducted LD analysis between significant

(p\ 0.0005) SNPs using the R packages genetics

(Warnes and Leisch 2005) and LDheatmap (Shin et al.

2006).

The alleles at the Ppd-A1, Ppd-B1, Ppd-D1, Vrn-

A1, Vrn-B1, Vrn-D1, and Vrn-D3 loci were deter-

mined using KASP markers in both populations with

standard protocols of the USDA Small Grains Geno-

typing Lab (Rasheed et al. 2016). These markers were

filtered and only those with minor allele frequency

greater than 0.10 were analyzed using single marker

analysis. Thus markers for Ppd-A1, Ppd-B1, Ppd-D1

and Vrn-D3 loci were retained and analyzed in the

SWW population, and markers for Ppd-B1, Ppd-D1,

Vrn-A1, Vrn-B1, Vrn-D1 and Vrn-D3 loci were

retained in the HSW analyses. Analysis for LD, as

described above, was conducted between KASP

markers and the SNP markers that were significant

from the association analysis on the same

chromosome.

Genomic selection (GS) analysis was performed in

R using rrBLUP package (Endelman 2011). A com-

mon set of 8754 markers scored in both SWW and in

HSW populations were used for GS and each

individual’s genomic estimated breeding value

(GEBVs) was calculated. Prior to GS, missing values

for all markers were imputed using the A.mat()

function (Endelman 2011). We used ten-fold cross

validation to estimate GS accuracy, which was

estimated as the correlation between the GEBVs and

the observed phenotypic values. The GS accuracy was

also estimated for between population predictions and

for between environmental cluster predictions within

each population.

Results

SWW phenotypes and GEI

We analyzed HD expressed in Julian days in the SWW

population. Winter wheat in southern environments

break dormancy earlier than when they are grown in

northern environments, and thus have an earlier HD

when expressed as Julian days. This does not mean

that the time period between breaking dormancy and

heading is shorter in the southern environments than in

the North. Heading date expressed in Julian days does

not estimate total vegetative time period, which in

winter wheat involves an extended period of dor-

mancy. The use of Julian days in the SWW population

will have a large impact on estimating environmental

main effect, but no impact on the relative value of the

main effects of genotypes, QTL or GEI effects.

In the analysis of variance in the SWW population,

we found both genotypic and environmental effects

were highly significant (p\ 0.0005) (Table 2). As

data were averaged over replications prior to the

analysis of variance (ANOVA), the error variance was

due to both GEI and error effects: genetic variance was

1.58 times greater than the error variance (Table 2).

As was reported in Huang et al. (2016), two clusters

of environments were identified for HD in SWW. One

cluster contained the six Ohio environments plus

Missouri 2013 and was termed the North cluster

(Fig. 1a). The other cluster had all the environments

from southern US and was termed the South cluster.

Replications from the same environment that differed

only by nitrogen treatment always clustered together.

All of the environments in the South cluster had

negative main effects except 13KYM, whereas all

environments in the North cluster had positive main

effects (Table 1). Using ANOVA, the GEI variance
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North  

South  

North 

South 

(a)

(b)

Fig. 1 Clustering of the

environments for the Soft

Winter Wheat (SWW)

population (a) and for the

Hard Spring Wheat (HSW)

population (b) using the

matrix of

genotype 9 environment

interaction values with

Ward’s minimum variance

criteria
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was partitioned and 58% of the total GEI variance was

due to genotype 9 cluster effects and 42% of the GEI

variance was due to genotype 9 environment effects

within clusters (data not shown).

In SWW, the estimated heritability for HD was

greater than 0.92 for overall environments and within

each cluster (Table 2). Genetic variance for HD in the

South was greater than in the North (Table 2). There

was a significant positive correlation (r = 0.83)

between the genotype main effects over the North

and over the South environments. The correlation of

the main effects of genotypes with their GEI effects

was 0.85 within South environments and was - 0.80

within North environments (Fig. 2a): the late geno-

types had positive interactions with the south envi-

ronments, but had negative interactions with the North

environments; early genotypes had negative interac-

tions with south environments and positive interac-

tions with the North environments (Fig. 2a). These

results indicate that early heading genotypes are later

than expected, based on main effects, when planted in

the North, and would head out earlier than expected

when planted in the South. HD for late genotypes are

earlier than expected in the North and are later than

expected when planted in the South.

HSW phenotypes and GEI

Heading date for the HSW population was recorded as

days from planting to Feekes 10.5 growth stage. This

system has a different interpretation than HD recorded

as Julian days in the SWW population. For HSW, HD

is an estimate of the duration of the vegetative period

of a line.

The analysis of variance in HSW over all environ-

ments revealed that genotype and environment effects

were highly significant (p\ 0.0005, Table 2). The 12

HSW environments were placed into two distinct

clusters (Fig. 1b, Table 1). One cluster contained

eight northern HSW environments and the two El
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Fig. 2 Plot of main effects of Soft Winter Wheat genotypes

a over environments versus their average genotype by

environment interaction with South or North environments;

and bmain effects of Hard Spring Wheat genotypes versus their

average genotype by environment interaction with South or

North environments
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Centro, California environments: this cluster was

named the North cluster. The second cluster contained

two environments from Davis, California and two

environments from Tanzania and was named the

South cluster (Fig. 1b). The El Centro and Davis

California sites had very different main effects on HD,

though the clustering was based solely on GEI values.

The four environments in the South cluster had very

different main effects, with the Tanzania sites having

large negative main effects and the California sites

having large positive effects (Table 1). The GEI

variance was partitioned and 86% of the total GEI

variance was due to genotype 9 cluster effects and

14% of them was due to genotype 9 environment

effects within clusters (Results not shown). Genetic

variance for HD in HSW was much greater in the

South environments than in the North cluster

(Table 2). Similar to the trend we observed in SWW,

the later heading HSW genotypes tended to have a

positive interaction with the South environments

(Fig. 2b) and a negative interaction with the North

environments (Fig. 2b), whereas earlier genotypes

tended to have the opposite GEI pattern (Fig. 2b).

The estimated heritability for HD in HSWwas 0.88

over all environments, 0.96 in the South cluster, and

0.91 in the North cluster (Table 2). This corresponded

to what we observed in the SWW population, where

greater genetic variance existed in the South environ-

ments that in the North environments (Table 2).

Association analyses

For the SWW and HSW populations, we analyzed

13,198 and 17,030 markers, respectively (Tables 3

Table 3 Total number of markers and number of significant (p\ 0.05) markers for heading date for each chromosome in the soft

winter wheat (SWW) and hard spring wheat (HSW) populations

Chromosome Number of markers Number of significant markers

SWW HSW SWW HSW

All North cluster South cluster All North cluster South cluster

1A 700 1129 35 24 32 94 13 40

1B 1337 1341 37 37 37 58 36 62

1D 358 412 19 2 26 6 43 6

2A 662 956 27 21 25 38 32 28

2B 1365 1673 31 41 27 82 57 149

2D 484 476 72 47 53 1 11 8

3A 676 839 6 14 6 22 25 23

3B 998 1124 68 86 62 31 25 32

3D 132 183 14 35 13 38 14 44

4A 486 851 23 27 24 18 52 17

4B 515 568 23 34 18 42 60 39

4D 40 67 3 4 3 3 6 NA

5A 735 956 33 40 35 49 64 42

5B 1064 1699 72 66 73 177 165 137

5D 133 172 NA 1 NA 3 12 2

6A 808 990 59 75 68 43 103 17

6B 991 1229 34 38 24 46 12 44

6D 111 149 21 16 20 3 5 3

7A 772 1044 19 41 13 60 62 55

7B 729 997 62 71 55 26 60 25

7D 102 175 10 9 10 23 4 23

Total 13,198 17,030 668 729 624 863 861 796

Significance in each population is summarized by analysis over all environments and then within each cluster of environments (North

and South)
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and 4). In SWW, approximately 36.7, 53.0, and 10.3%

of markers were from the A, B, and D genomes,

respectively. In HSW, approximately 39.7, 50.7, and

9.6% of the markers were from the A, B, and D

genomes, respectively (Table 3). The correlation of

the number of markers per chromosome between the

two populations was 0.96, indicating similar genome

coverage in both populations (Table 3).

We considered both the false discovery rate (FDR)

probability values and the unadjusted probability

value from GAPIT association analysis when assess-

ing QTL. Over different environments (either all

environments, North only, or South environments

only), the FDR is very conservative and only 14 and 5

markers had FDR probabilities less than 0.05 in the

SWW and in the HSW, respectively. The heritability

for all traits was high ([ 0.87) in both populations, so

it is almost certain that manymarkers with FDR values

greater than 0.05 are associated with real QTL, whose

effects are simply not large enough to pass the very

stringent FDR criteria. One of our objectives was to

compare genetic architecture of HD over North and

South environments and between the SWW and HSW

populations; the FDR seemed poorly suited for that

objective due to a seemingly high type II error rate.

Thus, we used unadjusted probability values to define

‘‘significant’’ (p\ 0.05), ‘‘very significant’’

(p\ 0.005) and ‘‘highly significant’’ (p\ 0.0005)

SNP-QTL association (Table 4).

We analyzed HD over all environments, over North

environments only, and South environments only. In

the SWW population, we found a total of 976 markers

(7.40%) were significant (p\ 0.05) in at least one of

the three HD analyses and 386 were significant in all

three (Table 4). The correlation of allele effects in the

North or South cluster of environments was 0.96 for

the 967 markers that were significant (p\ 0.05) in

either cluster. The regression of the allele effects of

these markers in the South cluster of environments

onto the allele effects in the North cluster was

significant (p\ 0.05, y = 0004 ? 2.13x) suggesting

allele effects in the South were 2.13-fold greater than

those in the North. In the HSW population, a total of

1588 markers (9.32%) were significant (p\ 0.05) in

at least one of the three analyses though only 174 were

significant in all three (Table 4).

The correlation of allele effects in the North and

South cluster of environments was 0.73 for the 1483

markers that were significant (p\ 0.05) in either

cluster. The regression of the allele effects of markers

from the South environments onto those of the North

environments was significant (p\ 0.05,

y = - 0.006 ? 1.11x) although the slope was close

to unity, suggesting that allele effects in the South

cluster were similar to those in the North cluster.

In both populations, the distribution of significant

(p\ 0.05) markers for HD was very similar to the

distribution of all markers over chromosomes:

28–41% from the A genome, 47–61% from the B

genome, and 9–21% from the D genome (Table 3). In

total, 29 markers were highly significant (p\ 0.0005)

in at least one analysis in the SWW and eight markers

were highly significant in the HSW. In either popu-

lation, the identification of independent QTLs within a

chromosome was clear, as the LD r2 values between

Table 4 Summary of

marker information for the

soft winter wheat (SWW)

and hard spring wheat

(HSW) populations (1)

overall environments, (2)

over environments in the

South cluster, and (3) over

environments in the North

cluster. Significance is

defined as p\ 0.05

SWW HSW

Number of markers used in association analysis 13,198 17,030

Number of markers significant for one or more traits 976 1588

Number of markers significant for all three traits 386 174

Number of markers significant overall environments 668 863

Range of r2 values overall environments 0.21–0.27 0.22–0.30

Range of |a| overall environments 0.29–0.94 0.52–1.57

Number of markers significant in North cluster 729 796

Range of r2 values in North cluster 0.16–0.19 0.23–0.30

Range of |a| for North cluster 0.17–0.46 1.25–3.66

Number of markers significant in South cluster 624 861

Range of r2 values in South cluster 0.23–0.29 0.14–0.19

Range of |a| for South cluster 0.39–1.33 0.18–0.52
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highly significant markers from the same chromosome

were either greater than 0.4 or close to zero.

The LD analysis coupled with the marker position

from consensus map suggested there were eight and

five highly significant (p B 0.0005) and independent

QTL for HD in the SWW and the HSW population,

respectively (Table 5). In SWW, these eight QTL

were significant (p\ 0.05) in all three analyses.

Single-marker analysis revealed that the Ppd-A1,

Ppd-B1, Ppd-D1 and Vrn-D3markers were significant

(p\ 0.05) in at least one HD analysis within the SWW

population (Table 6). Vrn-D3 was significant in the

North environments but not the South environments.

The LD analysis indicated that the Vrn-D3 locus were

marginally associated with QTL8 (Table 6). All three

Ppd loci were significant (p\ 0.05) in SWW in the

North and South environments as well as overall

environments (Table 6). The LD analysis indicated

that Ppd-A1 was strongly associated with markers for

QTL3 (Table 6).

In HSW, just one marker (QTL12) was highly

significant (p\ 0.0005) in all three analyses whereas

the other four (QTL9, 10, 11, and 13) were significant

(p\ 0.05) only for overall HD environments and in

the South environments (Table 5). The Ppd-B1 and

Ppd-D1 loci were highly significant (p\ 0.0005) for

HD in the HSW South environments (Table 6) and

overall environments. The LD analysis indicated that

Ppd-B1 and Ppd-D1 were slightly associated with

markers for QTL11 and QTL12, respectively

(Table 6). The Vrn-A1, Vrn-B1, and Vrn-D1 loci were

significant (p\ 0.05) for HD in the North environ-

ments (Table 6) whereas the Vrn-D3 locus was

significant in the South environments.

The eight highly significant (p\ 0.0005) QTL in

the SWW population and the five QTL from the HSW

population all had R2 values less than 0.1 and the

absolute value for allele effects did not exceed

3.8 days (Table 5). In both populations, the R2 values

and allele effects were higher in analyses of the South

clusters of environments, which produced greater

range of HD and greater genetic variance than in the

North environments.

Of 8754 markers scored in common between the

two populations, 657 and 808 markers were significant

(p\ 0.05) in at least one of the three analyses in the

SWW population and in the HSW population, respec-

tively. Between the sets of 657 significant markers in

SWW and 808 significant markers in HSW, 98

markers were common. The correlation of absolute

values of allele effects of these 98 markers in the HSW

and SWW population, estimated from the three

different analyses, ranged from 0.02 to 0.36. Within

SWW, there were 29 highly significant markers

(p\ 0.0005) in at least one of the three analyses: 18

of these were scored in the HSW population, and all

had p values greater than 0.05. In the HSW, there were

eight highly significant markers (p\ 0.0005) that

were also scored on the SWW where they were not

significant in any analysis.

In the SWW population, 29 markers were found to

be highly significant (p\ 0.0005) in at least one

analysis and were further selected for LD analysis to

assess their independence. In the HSW population,

eight markers were identified as highly significant

(p\ 0.0005) in at least one analysis and were used in

LD analysis.

Genomic selection

The GS accuracy of HD for the SWW or the HSW

populations, estimated in overall environments, North

environments only, or South environments only,

ranged from 0.41 to 0.51 (Table 7). In the SWW, GS

accuracy was greater in the South environments than

in the North cluster, whereas the opposite trend was

observed in HSW (Table 7). Using one-time predic-

tions, we found that, within each wheat market class,

data from one cluster of environments could predict

the phenotype in the other cluster of environments

(Table 7). Data from one wheat market class could not

predict the phenotypes of lines in the other class

(Table 7).

Line selection in Africa

The HD in Tanzania ranged from 45.2 to 89.3 days

and the average was 63.5 days. We noted 63 lines in

the HSW had significantly (p\ 0.05) earlier HD

values than the mean HD, based on a least significant

difference analysis. We identified 15 lines from the

HSW population that had an earlier HD in northern

Tanzania than the existing commercial cultivars

(50 days). The 15 earliest HSW came from breeding

programs based in California, Idaho, South Dakota,

Montana, and Canada, representing the entire north–

south range sampled in the HSW populations.
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Discussion

Wheat flowering process is controlled by vernaliza-

tion, photoperiod response and earliness per se genes.

In this study, vernalization requirement was con-

founded between the winter (SWW) and spring

(HSW) wheat populations. Within each population,

we identified two distinct clusters of environments

corresponding to northern and southern test sites. In

each population, the South cluster of environments

produced a larger range of HD than the North

environments. However, in both populations, the

phenotypic values were highly, positively correlated

between the North and South environments. Thus, the

Table 6 Summary of single point analyses of markers for

photoperiod and vernalization genes in the soft winter wheat

(SWW) and the hard spring wheat (HSW) panels, their

chromosome locations, and linkage disequilibrium (LD) values

with the markers on the same chromosome that were associated

with the heading date QTL shown in Table 5

Popa Locus Chr Possible QTL association LD (r2) p value

All environments North South

SWW Ppd-A1 2A QTL3b 0.56 0.0011 0.0000 0.0326

Ppd-B1 2B NA NA 0.0093 0.0269 0.0094

Ppd-D1 2D NA NA \ 0.0001 0.0133 \ 0.0001

Vrn-D3 7D QTL8 0.15 0.0682 0.0001 0.4217

HSW Ppd-B1 2B QTL11 0.10 0.0000 0.0047 0.0000

Ppd-D1 2D QTL12 0.13 0.0000 0.0910 0.0000

Vrn-A1 5A NA NA 0.0749 0.0000 0.3821

Vrn-B1 5B NA NA 0.0089 0.0146 0.0150

Vrn-D1 5D NA NA 0.1595 0.0001 0.4328

Vrn-D3 7D QTL13 0.01 0.0051 0.4779 0.0003

aPop: Population for Soft Winter Wheat (SWW) or Hard Spring Wheat (HSW)
bQTL numbers from Table 5

Table 7 Accuracy of

genomic selection within

and between soft winter

wheat (SWW) and hard

spring wheat (HSW)

populations and cluster of

environments

A tenfold cross-validation

(CV) was used when the

training population and

prediction population were

the same

Training population (TP) Prediction population r

SWW All environments Same as TP, used tenfold CV 0.48

North environments Same as TP, used tenfold CV 0.43

South environments Same as TP, used tenfold CV 0.49

HSW All environments Same as TP, used tenfold CV 0.51

North environments Same as TP, used tenfold CV 0.51

South environments Same as TP, used tenfold CV 0.41

SWW All environments SWW North environments 0.81

All environments South environments 0.92

North environments South environments 0.75

HSW All environments HSW North environments 0.61

All environments South environments 0.89

North environments South environments 0.53

SWW All environments HSW All environments - 0.20

North environments North environments - 0.10

South environments South environments - 0.21

HSW All environments SWW All environments - 0.09

North environments North environments - 0.02

South environments South environments - 0.12
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separation of environments into clusters based on GEI

appeared to be due to differences in genotype, rather

than lack of correlation of phenotypic values between

clusters. This was supported by the estimated genetic

variance within each cluster of environments in each

population (Table 2).

The effect of photoperiod genes varies with the

latitude of the growing environment (Kamran et al.

2014). In SWW, the differences in variation in HD

between the South and North clusters of environments

is possibly due to the difference in magnitude of

effects for photoperiod and earliness per se between

the two clusters. This was observed as the PpD-D1 and

Ppd-B1 loci had greater effects on HD in the South

environments than the North environments, though the

opposite was observed for Ppd-A1 (Table 6). Kamran

et al. (2014) reported that photoperiod genes influence

heading more in lower latitudes than in northern

latitudes, due to shorter day-length in the South. In the

North environments, the SWW lines break dormancy

later in the calendar year when day-length is longer

than when they are grown in the South. Thus the day-

length requirement for the photoperiod genes is met

sooner in the North than in the South and the

photoperiod genes may cause less variation for HD

in the North than in the South. Earliness per se genes

contribute to regional adaptation (Griffiths et al.

2009). In this study, the earliness per se genes would

likely have similar effects in the North and South, as

indicated by the correlation of the marker effects in the

North and South environments.

Similarly, the differences in variation for HD

shown by the two clusters of environments for the

HSW population could also be due to differences in

the effects of Ppd genes and the effects of growing

temperature between the two clusters. The environ-

ments in the North cluster of HSW environments all

experience long days immediately after crop emer-

gence in early May, such that the day-length require-

ment for flowering would be met quickly and thus the

Ppd genes would likely have a small effect on heading.

Wheat lines in the HSWSouth cluster of environments

were planted when day-length was short, therefore the

photoperiod-sensitive wheat lines would not be flow-

ering until the day-length exceeds a threshold. This

likely explains why the Ppd-B1 and Ppd-D1 loci were

only highly significant (p\ 0.0005) for HD in the

South environments of the HSW.

The assayed Vrn loci all had significant (p\ 0.05)

effects on HD in the HSW and SWWpopulations, with

some being important in the North environments and

some in the South environments. It is clear why the

Vrn-D3 locus would be significant in the SWW

population in the North environments. It is difficult

to explain why the Vrn loci have a significant effect on

HD in the HSW environments. Perhaps there are some

effects of the Vrn loci on HD in HSW due to copy

number variants (Dı́az et al. 2012).

The results in this study are supported by previous

findings. Worland and Snape (2001) suggested that

adaptation of spring wheat to different agro-climate

conditions is highly influenced by Ppd genes. It has

also been reported that lack of fulfillment of photope-

riod requirement delays flowering in photoperiod-

sensitive spring wheat (Kamran et al. 2014) and this

delay would have occurred in the South environments

in our study.

We used unadjusted probability values for classi-

fying QTL instead of FDR probability values, since

the FDRwas too stringent and it likely produced a high

type II error rate in this study. The use of unadjusted p-

values increases the potential rate of type I error,

which is a concern for identifying real QTL. Yet,

reducing type II error is beneficial for analysis of

genetic architecture for polygenic traits. Bernardo and

Yu (2007) suggested that the effectiveness of marker-

assisted selection was improved when more markers

were added to a model with relaxed probability values

to reduce type II error, indicating that many markers

with p values greater than 0.05 can be marking real

QTL. In each population, a similar proportion of

markers was significant (p\ 0.05) and had a similar

distribution across chromosomes. The genetic vari-

ance explained (R2) and allele effects were generally

low in both populations even for highly significant

(p\ 0.0005) markers.

In both populations, significant (p\ 0.05) QTL

effects estimated in the South and North clusters of

environments were highly correlated (r = 0.97 in the

SWW population; r = 0.73 in the HSW population).

Thus, the results from one set of environments

validated the other, suggesting that repeatable marker

effects were identified even when using a probability

of 0.05. The QTL effects in both populations were

two- to five-folds larger in the South cluster of

environments, which produced the greatest range of

phenotypes and tended to have short day-length, than
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in the North cluster of environments. Heading date

appeared to be controlled by the same genes in both

clusters of environments, suggesting that the earliness

per se genes have similar effects within a class of

wheat, regardless of different environments though the

magnitude of effects for these genes varied. In

contrast, there was weak evidence for common HD

QTL between the SWW and HSW populations, as the

correlation of SWW and HSW allele effects was close

to zero, and the fewQTL that appeared in common had

only a minor effect on HD in either population. Two

QTL on chromosomes 4A and 5A did affect HD with

probability values of less than 0.005 in both popula-

tions. The other four possible coincident QTL had

probability values greater than 0.05 in at least one

population.

Some QTLs (QTL3 and QTL8 in SWW; QTL12 in

HSW were located near Ppd or Vrn genes (Table 6)

and thus may be coincident with those loci. Other Ppd

and Vrn loci were located on chromosomes with QTL

but did not appear to be associated with the markers for

those QTL. In HSW, the QTL located on chromo-

somes 2B (QTL11) and 2D (QTL12) had an allele

effect of greater than 3.15 days in the short day-length

South environments. These were associated with the

Ppd genes (Table 6).

The HSW QTL12 located on chromosome 2DS is

in disequilibrium with Ppd-D1. This QTL had an

effect on HD of 0.40 in overall environments but

3.7 days in the South environments, where photope-

riod genes should have a large effect on HD. Ppd-D1 is

reported to have a great effect on photoperiod

sensitivity (Beales et al. 2007; Kamran et al. 2014).

The markers for the highly significant (p\ 0.0005)

QTLs (QTL8 and 13) identified in this study on

chromosome 7D (Table 5) were slightly associated

with vernalization gene Vrn-D3, (LD r2 = 0.1,

Table 6). Vrn-D3 together with Vrn-A1 and Vrn-B1

were reported to have effects on heading date in

previous studies (Law et al. 1976; Sourdille et al.

2000; Barrett et al. 2002; Yan et al. 2003; Kiss et al.

2014). The QTLs on chromosomes 6B (QTL6 in

SWW) and 2B (in QTL11 in HSW) are in regions,

where earliness per se genes were reported in previous

studies (Scarth and Law 1983; Worland 1996; Snap

et al. 2001).

There is often a complex interaction among Ppd,

Vrn, and earliness per se genes as well as interactions

of these genes with the environments (Gomez et al.

2014; Gororo et al. 2001; Kamran et al. 2013;

Sukumaran et al. 2016; van Beem et al. 2005). As

the SWW and HSW were grown in very different

environments this may be the reason for lack of

common QTLs between the two populations. More-

over, the SWW and HSW are genetically very

different from one another based on the first two

principal component scores (Fig. 3). The presence or

absence of particular Vrn alleles may affect the

expression and value of Ppd and earliness per se

genes (Iqbal et al. 2007; Sukumaran et al. 2016) and

may explain why marker effects in the HSW and

SWW showed little commonality.

Using genomic selection to predict HD among

different environments and populations could assist

breeders to select cultivars with adaptation to specific

environments. Our results suggest that GS models can

accurately predict HD between different environments

within HSW or within SWW, but predictions between

SWWandHSWwould not be useful. The HSW results

could be useful for wheat breeding in Africa. Much

African wheat germplasm originates from CIMMYT

and other non-local programs. Results in this study

reveal that GSmodels built using data from other trials

in other countries would appear to be able to predict

HD and maturity data in Africa. Thus African breeders

can collaborate with HSW breeders worldwide to find

early maturing lines with confidence that HD data

Fig. 3 Graph of first two principal components from the

analysis of the Soft Winter Wheat (SWW) and Hard Spring

Wheat (HSW) populations using a common set of 8754 markers
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from those programs can predict HD in Africa.

Tanzania has very short growing season and early

maturing wheat cultivars are desirable to avoid

season-ending drought. We identified 15 genotypes

from the HSW population that have HD at least

4.8 days earlier than that of standard checks for

northern Tanzania. These 15 genotypes were selected

based on BLUPs from phenotypic analysis of Tanza-

nia environment only, the presence of highly signif-

icant markers for early HD, and also the GEBVs

developed from the South set of HSW environments.

There remained genetic variation among these 15 lines

at two of the HSW QTLs, one of which had a large

effect on HD in South environments. Thus crossing

amongst these 15 lines should produce transgressive

segregants that would have even earlier HD than that

found in the 15 lines.

The selected lines can be used in the Tanzanian

wheat-breeding program to develop early heading

populations adapted to wheat growing environments

in Tanzania. Heading date is a highly heritable trait

even when based on individual plant, and phenotypic

selection could be used to breed for early wheat lines

for Tanzania. But association analysis and genomic

selection techniques could still be helpful in identify-

ing genotypes with novel alleles for early HD,

especially if the individual plants were being geno-

typed for selecting more complex traits such as yield.

The selections made as a consequence of this work

will be used to create early flowering wheat cultivars

adapted to wheat growing environments in northern

Tanzania.
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